Rangkaianlistrik seri disusun secara berderet, sedangkan rangkaian listrik paralel disusun secara bersusun atau bercabang. Contoh 2 - Soal Rangkaian Listrik Seri Paralel dan Campuran. Empat buah lampu disusun seperti gambar berikut. Urutan lampu yang menyala paling terang sampai ke yang paling redup adalah . A. L 1, L 3, L 2, L 4 B. L
BelajarKelas X. 1. Satuan resistansi dari sebuah resistor yaitu 2. Warna merah sebagai gelang ke-4 pada resistor 4 warna bernilai 3. Dibawah ini merupakan pengertian dari resistor yang benar, yaitu A. Suatu alat elektronika yang berfungsi untuk membatasi jumlah arus yang mengalir dalam suatu. rangkaian.
Untuk mempelari materi ini, kalian harus melakukan pengamatan dan memeriksa parameter rangkaian arus searah yang terdiri dari beberapa resistor yang terhubung seri, paralel, dan kombinasi seri-paralel dalam sebuah eksperimen yang telah disiapkan oleh guru. Melalui eksperimen ini, kalian akan memeriksa parameter rangkaian arus searah meliputi arus, tegangan, dan resistan dalam suatu rangkaian resistor yang terhubung seri, paralel, dan kombinasi seri-paralel. Untuk itu, kalian harus melakukan tugas ini secara berkelompok. 109 Petunjuk Resistor berfungsi untuk menghambat arus dan membagi tegangan, nilai nominal resistansi dan toleransi suatu resistor ditunjukkan oleh pita kode warna pada badan resistor tersebut. Warna pertama dan kedua merupakan nilai satuan, dan puluhan, warnaketiga menunjukkan jumlah nol dan warna keempat adalah toleransinya. Contoh Suatu resistor memiliki warna dengan urutan merah, ungu, kuning, dan emas; maka harganya 270000 atau 270 k toleransi 5%. Siapkan bahan untuk melakukan eksperimen memeriksa parameter rangkaian seri dan paralel resistor, yang terdiri dari papan eksperimen rangkaian arus searah dan enam resistor arang yang memiliki resistansi berbeda, yaitu 200 ohm 1 kilo Ohm. Siapkan alat pendukung eksperimen, yang terdiri dari catu daya 6 VDC atau batere kering 4 x 1,5VDC, multimeter digital, serta kabel penghubung jumper. Tabel 1. Kode Warna Resistor Warna Satuan Puluhan Pengali Toleransi Hitam 0 - 1 - Coklat 1 1 10 1% Merah 2 2 100 2% Jingga 3 3 1000 - Kuning 4 4 10000 - Hijau 5 5 100000 - Biru 6 6 1000000 - Ungu 7 7 10000000 - Abu-abu 8 8 100000000 - Putih 9 9 1000000000 - Perak - - 0,01 10% Emas - - 0,1 5% 110 Rangkaian Seri resistor Rangkaian listrik yang hanya memiliki jalur tunggal untuk aliran arus listrik disebut rangkaian seri. Dalam rangkaian seri resistor seperti yang diperlihatkan dalam Gambar pada setiap resistan mengalir arus yang sama besarnya. Gambar Rangkaian Seri Tiga Resistor Pada rangkaian seri, seluruh nilai resistan saling ditambahkan untuk mendapatkan nilai resistan total. Dalam hal ini, nilai tegangan total dari catu daya sama dengan jumlah tegangan yang ada pada setiap resistor. 111 Percobaan 1 Rangkaian Seri Resistor 1. Buat rangkaian seperti gambar berikut 2. Hubungkan titik 1 titik 5, dan catat penunjukkan ampermeter 3. Buat rangkaian seperti gambar berikut 4. Hubungkan titik sambung 1 5, dan catat penunjukkan ampermeternya 5. Buat rangkaian seperti gambar berikut 6. Hubungkan titik 1 5, dan catat penunjukkan ampermeternya 7. Ganti resistor dengan nilai yang berbeda dan periksa ampermeternya 112 Rangkaian Paralel Resistor Suatu rangkaian listrik yang memungkinkan arus mengalir melalui satu atau lebih konduktor atau resistor atau rangkaian listrik ada waktu bersamaan disebut rangkaian paralel. Gambar memperlihatkan contoh rangkaian listrik yang terdiri dari lampu dan motor yang tersusun secara paralel. Gambar Rangkaian Listrik Secara Paralel Dalam rangkaian paralel, jumlah arus yang mengalir pada setiap cabang arus yakni arus yang mengalir melalui lampu dan melalui motor sama dengan arus input total yang dikeluarkan oleh catu daya. Arus yang mengalir pada setiap cabang arus tergantung pada nilai resistan yang ada pada rangkaian yang bersangkutan. Jika lampu memiliki resistan yang besarnya seperempat bagian dari nilai resistan yang dimiliki motor, maka 4/5 bagian arus akan mengalir melalui lampu dan 1/5 bagian arus akan mengalir melalui motor. Tegangan pada setiap cabang paralel sama. 113 Percobaan 2 Rangkaian Paralel Resistor 1. Buat rangkaian seperti gambar berikut 2. Hubungkan titik 1 titik 6, dan 3. Catat penunjukkan ampermeter 4. Pindahkan ampermeter ke titik 5 5. Ulangi eksperimen seperti semula, dan catat penunjukkan ampermeternya 6. Pindahkan ampermeter ke titik 6 7. Ulangi eksperimen seperti semula, dan catat penunjukkan ampermeternya 8. Ganti resistor dengan nilai yang berbeda dan periksa ampermeternya. 9. Gunakan hukum Ohm untuk membahas hasil eksperimen kalian. Rangkaian Kombinasi Seri-Paralel Pada rangkaian kombinasi seri-paralel resistor, memiliki sifat dari rangkaian seri dan rangkaian paralel resistor. Dalam rangkaian kombinasi seri-paralel, maka arus yang mengalir pada setiap elemen pasif tidak semuanya sama, kecuali elemen pasif yang terhubung 114 seri. Jumlah arus jalur lampu dan arus pada jalur motor sama dengan arus yang dkeluarkan oleh sumber. Tentukan nilai Vs? Gambar Rangkaian Kombinasi Seri-Paralel Setelah selesai dilanjutkan mengerjakan tugas proyek 4, yaitu mengamati karakteristik rangkaian superposisi sebagai berikut. Percobaan 3 Rangkaian Kombinasi Seri-Paralel Melalui kerja proyek ini, kalian akan memeriksa parameter rangkaian arus searah yang terdiri dari beberapa resistor yang membentuk rangkaian kombinasi seri dan paralel melalui sebuah eksperimen. Rangkaian kombinasi seri paralel banyak diterapkan pada sistem kelistrikan. Untuk itu, kalian harus merancang proyek eksperimen tersebut secara berkelompok. Petunjuk 1. Rangkaian kombinasi seri-paralel dibentuk melalui empat buah resistor R1, R2, R3, dan R4 yang dihubungkan secara seri dan paralel sedemikian sehingga membentuk konfigurasi khusus seperti diperlihatkan dalam gambar berikut. 115 2. Amati rangkaian tersebut dan identifikasi bahan dan alat yang diperlukan untuk eksperimen. Kemudian persiapkan eksperimen untuk melakukan pemeriksaan yang lebih mendalam terkait dengan rangkaian konbinasi seri-paralel. Untuk itu persiapkan bahan-bahan yang dibutuhkan. 3. Pilih nilai resistansi resistor antara 200 Ohm 400 Ohm. 4. Buat rangkaian seperti gambar. 5. Aktifkan rangkaiannya dengan menutup sakelar S. 6. Catat data pengukuran arus dan tegangan serta resistannya! 7. Laporkan hasil penelitian kalian, dan presentasikan di kelas. Menganalisis Hubungan Tegangan dan Arus Perbandingan selisih potensial atau tegangan U antara dua titik sembarang pada suatu konduktor yang dialiri arus listrik sebesar I adalah konstan jika temperatur konduktor tidak berubah. Secara matematika fenomena tersebut dapat dituliskan sebagai berikut konstan I U Selanjutnya konstanta tersebut dikenal sebagai nilai resistansi atau tahanan R dari konduktor antara dua yang disebutkan di atas. Sehingga formula matematikanya dapat dituliskan sebagai berikut R I U 116 Tugas Praktek 4 Pengamatan Hubungan Arus dan Tegangan Tujuan Menentukan hubungan antara kuat arus dan tegangan listrik dalam rangkaian seri. Alat 1. amperemeter 2. voltmeter 3. DC Regulated Power Supply 4. saklar 5. kabel-kabel penghubung 6. Resistor keramik 100 ohm/ 5 watt 7. Resistor keramik 100 ohm/5 watt Gambar Kerja Petunjuk 1. Rakit rangkaian seperti gambar kerja 2. Atur tegangan VDC mulai 0 sampai 12 VDC. 3. Catat nilai arus ditunjukkan pada amperemeter dan voltmeter. 4. Hasil pengamatan masukkan dalam tabel pengamatan 5. Berdasarkan hasil pengamatan, gambarkan grafik hubungan antara V dan I 6. Bagaimana bentuk grafik hubungan antara V dan I? Diskusikan hasil 117 Tabel Pengamatan No Nilai Tegangan V Arus Tegangan R1 R2 1 2 3 4 5 6 Hukum Ohm Suatu fenomena menarik dalam rangkaian resistif adalah hubungan antara tegangan dan arus pada suatu resistor. Perbandingan selisih potensial atau tegangan U antara dua titik sembarang pada suatu resistor yang dialiri arus listrik sebesar I adalah konstan jika suhu resistor tidak berubah. Satuan praktis resistor adalah ohm. Di mana bila akibat tegangan sebesar satu volt mengakibatkan mengalir arus listrik sebesar satu amper pada suatu bahan resistor maka nilai resistansi bahan tersebut adalah satu ohm. Pernyatan ini sering disebut sebagai Hukum Ohm, yaitu Di mana R adalah nilai resitansi dari bahan resistor dalam satuan ohm U adalah tegangan dalam satuan volt, ada pula yang menggunakan simbol E untuk tegangan I adalah arus listrik dalam satuan amper Berikut ini diberikan beberapa contoh hubungan antara tegagan, resistansi, dan arus dalam suatu rangkaian listrik. Contoh 1 Tentukan nilai arus dalam rangkaian listrik yang terdiridari sebuah resistor 10 ohm, danmendapat tegangan sebesar 220 volt? 118 Solusi Langkah 1 I = U/R Langkah 2 I = 220/10 Langkah 3 I = 22 A Contoh 2 Tentukan nilai potensial E dalam rangkaian listrik yang terdiri dari sebuah resistor 48 ohm, dan dialiri arus sebesar 5 amper! Solusi Langkah 1 E = R x I Langkah 2 E = 48 x 5 Langkah 3 E = 240 volt Contoh 3 Tentukan nilai resistan lampu pijar 100 watt, bila tegangannya 220 volt. Solusi Langkah 1 R = P / U Langkah 2 R = 100 / 220 Langkah 3 R = 0,45 ohm Diskusi Lanjut Rangkaian Resistor Dari fenomena di atas diketahui bahwa setiap konduktor mempunyai resistansi yang bersifat menahan laju aliran arus pada konduktor tersebut. Oleh karena itu nilai resistansi sering disebut sebagai nilai tahanan. Untuk keperluan praktis, semua bahan konduktor yang digunakan secara khusus sebagai penahan arus disebut sebagai “Resistor” atau ada pula yang menyebutnya sebagai “Tahanan”. 119 Ditinjau dari bahan dan konstruksinya maka resistor dapat dibedakan sebagai berikut - Berbentuk gulungan kawat dari bahan nikelin atau campuran nichrom pada keramik/plastik untuk daya besar - Berbentuk campuran bahan carbon untuk daya kecil hingga ½ watt - Berbentuk endapan logam pada keramik - Berbentuk endapan carbon pada keramik Penggunaan praktis dari resistor dalam rangkaian listrik adalah sebagai berikut - Sebagai unsur kalibrasi meter jarum, misalnya sebagai resistor Shunt untuk ampere meter dan resistor seri untuk volt meter - Sebagai pengatur arus pada suatu rangkaian listrik misalnya reostat - Sebagai pembagi tegangan misalnya potensiometer - Sebagai elemen pemanas, misalnya resistor yang terbuat dari bahan Nikelin atau Nichrom. Untuk keperluan praktis resistor dapat dihubungkan secara seri, parallel atau kombinasi seri-paralel. Di mana masing-masing jenis hubungan akan memiliki sifat yang berbeda sebagai berikut Rangkaian Seri Jika tiga resistor dihubungkan seperti gambar di bawah ini maka disebut sebagai hubungan atau rangkaian seri resistor. 120 Karakteristik Rangkaian Seri - Arus yang mengalir dalam rangkaian seri selalu sama sepanjang lintasan arus yang ada dalam suatu rangkaian, sebab hanya ada satu lintasan arus dalam rangkaian seri. Arus di dalam rangkaian seri dinyatakan dalam persamaan berikut It = I1 = I2 = I3 = I4 = …… - Resistan total R, dalam rangkaian seri merupakan penjumlahan seluruh resistan yang ada di dalam rangkaian. Resistan dalam rangkaian seri dinyatakan dalam persamaan berikut Rt = R1 + R2 + R3 + R4 + …… - Tegangan dalam rangkaian seri digunakan sepenuhnya oleh seluruh resistan yang ada di dalam rangkaian. Beban pada rangkaian seri harus berbagi tegangan yang disalurkan ke rangkaian. Jadi, tegangan yang disalurkan ke dalam rangkaian akan terbagi pada setiap beban listrik yang ada. - Tegangan yang diterima oleh setiap beban akan berubah tergantung nilai resistan beban. Perubahan tegangan pada setiap beban disebut tegangan jatuh. Tegangan jatuh merupakan jumlah tegangan tekanan listrik yang digunakan atau hilang melalui pada setiap beban atau konduktor dalam proses pemindahan electron arus listrik melalui lintasan arus dalam rangkaian. Tegangan jatuh pada setiap beban proporsional dengan nilai resistannya. - Jumlah tegangan jath dalam suatu rangkaian seri sama dengan nilai tegangan yang dikenakan pada rangkaian tersebut. Hal ini dinyatakan dalam persamaan berikut 121 - Hukum Ohm dapat digunakan untuk menghitung setiap bagian yang ada dalam rangkaian seri atau rangkaian total. Gambar memperlihatkan rangkaian seri dengan empat resistan pemanas dengan nilai yang berbeda. Perhitungan resistan total, arus, dan tegangan jatuh pada setiap beban pemanas dapat dilakukan dengan cara berikut Gambar Rangkaian seri dengan 4 resistan Gambar memperlihatkan rangkaian seri yang terdiri dari empat buah resistan dari elemen pemanas. Resistansi masing-masing elemen adalah R1= 4, R2=10, R3=12, dan R4=14. Rangkaian seri tersebut dihubungkan ke sumber tegangan 220 V. Cara menghitung resistan total Langkah 1 Gunakan rumus Rt = R1 + R2 + R3 + R4 Langkah 2 Substitusikan nilai resistansi masing-masing resistor Rt = 4 + 10 + 12 + 14 Langkah 3 Selesaikan persamaannya Rt = 40 . Cara menghitung arus listrik total Untuk menghitung arus listrik yang mengalir di dalam rangkaian seri digunakan Hukum Ohm. 122 Rt U I Langkah 2 Substitusikan nilai tegangan U dan nilai resistansi total Rt. 40 220 I Langkah 3 Selesaikan persamaannya I = 5,5 amper Sekarang kita gunakan Hukum Ohm untuk menghitung tegangan jatuh pada elemen pemanas pertama R1. Langkah 1 Gunakan rumus U = I x R1 Langkah 2 Substitusikan nilai arus total I dan nilai resistansi elemen heater pertama R1. U = 5,5 x 4 Langkah 3 Selesaikan persamaannya U = 22 volt Menghitung tegangan jatuh pada R2 Langkah 1 Gunakan rumus U = I x R2 Langkah 2 Substitusikan nilai arus total I dan nilai resistansi elemen heater pertama R1. U = 5,5 x 10 Langkah 3 Selesaikan persamaannya U = 55 volt Menghitung tegangan jatuh pada R3 Langkah 1 Gunakan rumus U = I x R3 123 Langkah 2 Substitusikan nilai arus total I dan nilai resistansi elemen heater pertama R1. U = 5,5 x 12 Langkah 3 Selesaikan persamaannya U = 66 volt Menghitung tegangan jatuh pada R4 Langkah 1 Gunakan rumus U = I x R4 Langkah 2 Substitusikan nilai arus total I dan nilai resistansi elemen heater pertama R1. U = 5,5 x 14 Langkah 3 Selesaikan persamaannya U = 77 volt Menghitung tegangan total Langkah 1 Gunakan rumus Et = E1 + E2 + E3 + E4 Langkah 2 Substitusikan nilai arus total I dan nilai resistansi elemen heater pertama R1. E1 = 22 + 55 + 66 + 77 Langkah 3 Selesaikan persamaannya U = 220 volt Secara matematik dapat dituliskan sebagai berikut R total atau R ekivalen atau RT = R1 + R2 + R3 U = U1 + U2 + U3 = I. R1 + I. R2 + I. R3 = I. RT 124 Rangkaian Pembagi Tegangan Dari analisis rangkaian seri di atas dapat kita lihat bahwa tegangan sumber U terbagi menjadi tiga di dalam ketiga resistor, yaitu U1, U2, dan U3 . Di mana besar masing- masing tegang tersebut adalah U1 = I. R1 U2 = I. R2 U3 = I. R3 Dari kenyataan tersebut, maka sebuah susunan dari dua atau lebih resistor yang terhubung dalam seri lazim disebut sebagai rangkaian pembagi tegangan voltage devider. Perhatikan rangkaian pembagi tegangan berikut Gambar Rangkaian Pembagi Tegangan Biasanya rangkaian ini digunakan untuk memperoleh tegangan yang diinginkan darisuatu sumber tegangan yang besar. Gambar rangkaian berikut memperlihatkan bentuk sederhanarangkaian pembagi tegangan, yaitu diinginkan untuk mendapatkan tegangan keluaranvo yang merupakan bagian dari tegangan sumber v1 dengan memasang dua resistor R1dan R2 . 125 Nampak bahwa arus i mengalir melalui R1 dan R2, sehingga VI = V0 + VS VS = I x R1 V0 = I x R2 VI = IxR2 + IxR1 Jika V0 dan VS saling dibagikan, didapat V0/V1 = R2/R1 Dari sini dapat diketahui, bahwa tegangan masukan VI terbagi menjadi dua bagian, yaitu V0 dan VS, masing-masing sebanding dengan harga resistor yang dikenai tegangan tersebut. Dari persamaan tersebut diperoleh V0 = VI x R2/R1 + R2 Rangkaian pembagi tegangan adalah sangat penting sebagai dasar untukmemahami rangkaian DC atau rangkaian elektronika yang melibatkan berbagaikomponen yang lebih rumit. 126 Aplikasi Rangkaian Rangkaian seri berkaitan erat dengan rangkaian control yang diterapkan dalam sistem refrigerasi dan tata udara. Rangkaian kontrol merupakan suatu rangkaian listrik yang dapat mengontrol beban listrik dalam suatu system. Bila seluruh piranti kontrol terhubung dalam rangkaian seri, maka terbukanya salah satu kontak sakelar atau piranti kontrol lain yang ada di dalam rangkaian tersebut akan membuka rangkaian tersebut dan menghentikan penyaluran arus listrik atau pembebanan listrik. Gambar memperlihatkan contoh aplikasi rangkaian seri-paralel yang diterapkan pada refrijerator domestik. Kombinasi rangkaian seri dan paralel digunakan pada sistem sistem kelistrikan peralatan refrijerator yang berfungsi untuk menjaga suhu sesuai keinginan. Piranti control dihubungkan secara seri dengan peralatan yang dikontrolnya, yakni sebuah motor listrik. Rangkaian seri juga memuat piranti proteksi yang diperlukan suatu sistem untuk menjaga keamanan operasi dari suatu komponen peralatan. Di mana akan menghentikan operasi kompresor jika terjadi kondisi operasi yang tidak aman. Bila ada salah satu kontak dari piranti pengaman kompresor terbuka maka rangkaian listriknya akan terbuka dan kompresor akan berhenti bekerja. Piranti pengaman harus dihubungkan secara seri untuk memastikan bahwa kondisi tidak aman akan memutuskan beban yang dilindunginya. 127 Gambar Aplikasi Rangkaian Kombinasi pada Sirkit Kontrol Motor Rangkaian Parallel Resistor 128 Sifat-sifat Rangkaian Paralel Resistor - Beda potensial pada semua resistor adalah sama sebesar U - Sedang besar arus yang mengalir pada masing-masing resistor tergantung pada nilai resistansinya. - Jumlah aljabar arus cabang I1, I2 dan I3 sama dengan besar arus total IT. - Nilai resistansi total atau resistansi ekivalen RT dari rangkaian paralel tiga resistor adalah akan lebih kecil nilainya dari nilai terkecil ketiga resistor tersebut. Secara matematika dapat dituliskan sebagai berikut 3 2 1 1 1 1 1 R R R RT 3 2 1 I I I I 3 2 1 R U R U R U I T R U I Tugas Praktek 5 Tujuan Menentukan hubungan antara kuat arus dan tegangan listrik dalam rangkaian paralel. Alat 1. amperemeter 2. voltmeter 3. DC Regulated Power Supply 4. saklar 5. kabel-kabel penghubung 6. Resistor keramik 100 ohm/ 5 watt 7. Resistor keramik 100 ohm/5 watt 129 Gambar Kerja Petunjuk 1. Rakit rangkaian seperti gambar kerja 2. Atur tegangan VDC mulai 0 sampai 6 VDC. 3. Catat nilai arus ditunjukkan pada amperemeter dan voltmeter. 4. Hasil pengamatan masukkan dalam tabel berikut 5. No Nilai Tegangan V Arus Total Arus Cabang R1 R2 1 2 3 4 5 6 Berdasarkan hasil pengamatan, gambarkan grafik hubungan antara V dan I Bagaimana bentuk grafik hubungan antara V dan I? Diskusikan hasil percobaan dengan teman sekelompok, dan hasilnya dipresentasikan di kelas. 130 Pembagian Arus dalam sirkit paralel Gambar memperlihatkan sirkit paralel dua resistor. Gambar Pembagian Arus dalam sirkit paralel Pembagian arus dalam sirkit paralel dua resistor dalam ditentukan sebagai berikut 2 2 1 1 R U I dan R U I Jadi 1 2 2 1 R R I I 1 T 2 I -I I Padahal , jadi sehingga 1 2 1 1 R R I I I T 2 1 1 1 xR I I R I T Arus setiap cabang Dari persamaan terakhir di atas dapat digunakan untuk menentukan besar arus cabang I1 dan I2, yaitu 2 1 2 1 I xR R R 131 2 1 1 2 I xR RR I T Contoh kasus Bila R1 = 5 ohm, dan R2 = 20 ohm Tegangan batere = 12 volt Tentukan I1 dan I2 Solusi RT = / R1+R2 RT = 5x20 / 5+20 = 4 ohm IT = U / RT = 12 / 4 = 3 A I1 = 3 x 20 / 25 = 12/5 = 2,4 A I2 = 3 x 5 / 25 = 3/5 = 0,6 A Tugas Tentukan pembagian arus yang mengalir pada R3 dan R4! Jika diketahui tegangan pada catu daya adalah 30V. R1 = R2 = R3 = 10 ohm sedang R4 = 20 ohm Tugas Praktek 6 Melalui kerja proyek ini, peserta didik akan memeriksa parameter rangkaian seri resistor. Pengalaman belajar ini akan membantu peserta didik memahami Hukum Kirchoff. Untuk itu, peserta didik harus merancang proyek eksperimen tersebut sebaik-baiknya secara berkelompok. 132 Diagram Rangkaian Percobaan Petunjuk 1. Rakit rangkaian seperti gambar 2. Catat nilai arus dan tegangan ditunjukkan pada amperemeter dan voltmeter. 3. Catat hasil pengamatan masukkan dalam tabel pengamatan. 4. Buat kesimpulan dan Laporkan hasil percobaan Hukum Kirchoff Hukum Kirchoff menyangkut sifat arus dalam suatu titik sambungan dan sifat tegangan dalam suatu loop atau rangkaian listrik. Sesuai dengan obyek yang diamati maka ada dua Hukum yang diperkenalkan oleh Kirchoff, yaitu hukum kirchoff tentang arus Kirchoff’s Current Law, disingkat KCL dan hukum kirchoff tentang tegangan Kirchoff’s Voltage Law, disingkat KVL KCL atau Hukum Dot. Hukum Kirchoff tentang arus lazim disebut juga dengan istilah Hukum Dot atau Hukum Kirchoff I. Dalam sembarang rangkaian listrik, jumlah aljabar dari arus- arus yang bertemu pada suatu titik sambungan adalah sama dengan nol. Jumlah aljabar keseluruhan arus yang menuju titik percabangana adalah nol. Titik percabangan adalah titik pertemuan tiga atau lebih arus ke rangkaian atau sumber 133 tegangan dan juga dari unsur rangkaian atau sumber hukum ini, dipakai suatu perjanjian bahwa arus yang menuju titik percabangan ditulis dengan tanda positif dan arus yang tidak menuju meninggalkan titik percabangan ditulis dengan tanda negatif. Gambar Hukum Dot Dari gambar didapatkan persamaan arus sebagai berikut +I1 + I2 +-I3 +-I4 + -I5 = 0 I1 + I2 - I3 - I4 - I5 = 0 I1 + I2 = I3 + I4 + I5 Jadi jumlah arus yang masuk ke titik sambungan = jumlah arus keluar dari titik tersebut Tugas Praktek 4 Melalui kerja proyek ini, peserta didik akan memeriksa parameter rangkaian seri resistor. Pengalaman belajar ini akan membantu peserta didik memahami Hukum Kirchoff. Untuk itu, peserta didik harus merancang proyek eksperimen tersebut sebaik-baiknya secara berkelompok. 134 Diagram Rangkaian Percobaan Petunjuk 1. Rakit rangkaian seperti gambar 2. Catat nilai arus dan tegangan ditunjukkan pada amperemeter dan voltmeter. 3. Catat hasil pengamatan masukkan dalam tabel pengamatan. 4. Buat kesimpulan dan Laporkan hasil percobaan KVL Jumlah aljabar dari hasil kali antara arus dan resistansi dari setiap konduktor/resistor dalam sembarang rangkaian listrik tertutup ditambah jumlah aljabar ggl atau sumber tegangan yang ada di dalam rangkaian tersebut sama dengan nol. 135 Perhatian Tanda dari Turun tegangan voltage drop pada resistor tergantung pada arah arus yang melaluinya, tetapi tidak tergantung pada polaritas sumber tegangan U yang ada di dalam rangkaian tersebut. Gambar Turun Tegangan pada Resistor Apabila tegangan dibaca dari + ke -, dengan arah baca yang sama dengan arah arus I yang mengalir, maka harga V=RI adalah penurunan tegangan. Untuk memahaminya beri tanda positif + pada V dan beri tanda positif + pada RI. Sedangkan apabila pembacaan tegangan berlawanan dengan arah arus berilah tanda - V atau -RI. Sedangkan untuk sumer tegangan atau sumber arus berlaku ketentuan sebagai berikut Gambar Sumber Tegangan Bila arah baca dari a ke b, maka adalah suatu penurun tegangan berilah tanda positif pada V. Atau dengan kata lain, apabila menuruti arah baca + dari sumber tegangan, tulis V positif. Sebalik jika pembacaan dari kutub – sumber tegangan maka V ditulis dengan tanda negatif. Contoh 136 Gambar Loop ABCDA Dengan menerapkan hukum tegangan dari Kirchoff kita dapatkan persamaan loop sebagai berikut Perhatikan tanda polaritas pada setiap unsur yang ada di dalam loop, yaitu - negatif bila sesuai dengan arah loop - positif bila melawan arah loop - U1 + + + + U2 = 0 atau + + U1 - U2 Pe
Dalampraktiknya, resistor (R), induktor (L), dan kapasitor (C) dapat dirangkai seri, paralel, atau gabungan keduanya. Akan tetapi, pembahasan difokuskan pada rangkaian RLC seri. Gambar 5.23 memperlihatkan rangkaian RLC seri dan dihubungkan dengan sumber tegangan AC
Apa itu resistor? Resistor adalah komponen yang berfungsi mengurangi arus listrik yang mengalir atau disebut juga sebagai hambatan. Analogi dari sistem kerja resistor dan arus listrik adalah seperti aliran air pada pipa, semisal pipa memiliki hambatan yang besar maka air yang mengalir kecil sedangkan saat hambatan kecil air yang mengalir besar. Resistor sendiri adalah komponen elektronika yang sering kita jumpai dalam rangkaian, secara umum komponen resistor umumnya disusun menjadi rangkaian seri dan paralel. Lalu apa itu seri dan apa itu paralel? Rangkain seri adalah rangkaian yang komponenya tersusun secara berderet atau seperti barisan, sedangkan rangkaian paralel adalah adalah komponen yang tersusun secara berjajar. Anda ingin belajar mengenai rangkaian seri dan paralel? Yap tepat sekali jika Anda membaca artikel ini, karena artikel ini akan mengupas materi mengenai rangkaian seri, rangkaian paralel, dan contoh soal serta pembahasannya. Menghitung resistor rangkaian seri Kata seri memiliki sinonim berderet atau barisan, jadi resistor yang dirangkai seri adalah resistor yang disusun secara berderet. Pada rangkaian seri hanya mempunyai satu jalur yang dipakai untuk mengalirkan arus listrik, jadi apabila terjadi kerusakan pada salah satu jalur makan semua jalur berikutnya akan ikut terpengaruh. Resistor yang disusun seri mempunyai manfaat untuk memperbesar nilai hambatan pada suatu rangkaian. Rangkaian seri memiliki besar hambatan pengganti setara dengan jumlah nilai dari tiap hambatan yang digunakan pada sebuah rangkaian. Pada rangkaian seri tiap ujung-ujung resistornya mempunyai tegangan pengganti yang sama dengan jumlah tegangan pada semua rangkaian. Dan kuat arus pada rangkaian seri sama dengan kuat arus yang melewati masing-masing hambatan pada rangkaian. Sifat-sifat Rangkaian Seri Tiap komponen pada rangkaian aliran arus sama besarnya. Tegangan sumber sama dengan jumlah tegangan yang ada pada seluruh bagian komponen pada rangkaian. Tahanan total diperoleh dari jumlah semua tahanan pada tiap bagian rangkaian. Rumus Rangkaian Seri Untuk melakukan perhitungan pada rangkaian seri sangatlah mudah, karena tinggal melakukan penjumlahan nilai-nilai resistor saat digabungkan. Rumus resistor yang dirangkai secara seri bisa dihitung menggunakan rumus Rtotal = R1 + R2 + R3 + …….. + Rn Vsumber = V1 + V2 + V3 + …. + Vn ITotal = I1 = I2 = I3 = …. = In Rumus diatas adalah rumus yang biasa digunakan untuk menghitung resistor yang tersusun secara seri. Cara menghitung resistor yang disusun secara seri hanya dengan menjumlahkan nilai dari masing-masing resistor yang tersusun secara berderet. Cara Menghitung Resistor Paralel Cara Menghitung Resistor Paralel Rangkaian paralel adalah resistor yang tersusun secara sejajar, biasanya rangkaian paralel disusun secara bercabang. Rangkaian yang disusun secara paralel biasanya digunakan untuk mengurangi arus yang lewat. Komponen yang dibuat secara paralel akan bercabang, jika terjadi kerusakan di salah satu komponennya makan komponen lain akan tetap berjalan karena tidak terpengaruh oleh komponen lain yang rusak. Rangkaian yang disusun secara paralel memiliki tegangan yang sama pada setiap ujung resistornya, sedangkan kuat arusnya terbagi-bagi sesuai dengan nilai resistansi dari masing-masing hambatan. Sifat-sifat Rangkaian Paralel Komponen pada rangkaian memiliki aliran arus yang berbeda-beda, tergantung nilai resistor pada tiap cabangnya. Arus total sama dengan jumlah arus dari seluruh rangkaian. Tegangan pada tiap cabangnya sama dengan tegangan total atau tegangan sumber. Tahanan total diperoleh dari jumlah kebalikan dari semua resistor yang terdapat pada setiap cabang di rangkaian. Rumus Rangkaian Paralel Untuk melakukan perhitungan pada rangkaian paralel tinggal menggunakan rumus resistor yang dirangkai secara paralel sebagai berikut Vsumber = V1 = V2 = V3 = …. = Vn ITotal = I1 + I2 + I3 + …. + In Rumus diatas adalah rumus yang biasa digunakan untuk menghitung resistor yang tersusun secara paralel. Cara menghitung resistor yang disusun secara paralel adalah dengan memasukan nilai dari masing-masing resistor kedalam rumusnya. Menghitung hambatan rangkaian tentunya berbeda dari membaca nilai resistor. Untuk contoh soal akan dibahas pada sub bab berikut. Note Hal yang perlu diingat bahwa Nilai Hambatan Resistor Ohm akan bertambah jika menggunakan Rangkaian Seri Resistor sedangkan Nilai Hambatan Resistor Ohm akan berkurang jika menggunakan Rangkaian Paralel Resistor. Contoh Soal Perhitungan Resistor 1. Seorang teknisi akan membuat rangkaian yang membutuhkan nilai 4k, akan tetapi stok resistor di pasaran dengan nilai tersebut sedang kosong. Maka berapa nilai resistor pengganti 4k yang harus dipilih teknisi untuk membuatnya dalam bentuk rangkaian seri? Pembahasan Untuk memperoleh nilai 4k banyak cara yang bisa ditempuh, pertama adalah dengan menyusun empat buah resistor dengan nilai 1k seperti berikut. Rtotal = 4k R1 + R2 + R3 + R4 = 4k 1k + 1k + 1k + 1k = 4k Atau bisa juga dengan cara kedua yaitu menyusun dua buah reistor bernilai 2k. Jadi jika dua buah resistor disusun seri maka nilai resistor totalnya 2k + 2k = 4k 2. Terdapat dua buah resistor yang dirangkaian secara paralel dengan nilai masing-masing resistor adalah 220 dan 330, maka berapakah nilai dari hambatan totalnya? Pembahasan Diketahui R1 = 220 R2 = 330 Ditanya Rtotal….? Jawab Rtotal = = 132 3. Aldi mempunyai 4 buah resistor, dia berencana untuk merangkainya menjadi rangkaian seri. Masing-masing resistor milik Aldi adalah bernilai 1k, 47, 100, dan 560. Maka berapa total nilai resistor Aldi saat disusun secara seri? Pembahasan Diketahui R1 =1K = 1000 R2 = 47 R3 = 100 R4 = 560 Ditanya Rtotal….? Jawab Rtotal = R1 + R2 + R3 + R4 Rtotal = 1000 + 47 + 100 + 560 = 1707 4. Suatu rangkaian mempunyai tiga buah resistor yang tersusun secara paralel, rangkaian tersebut dialiri arus sebesar 2A, maka tentukanlah besar tegangan pada tiap resistor jika masing-masing memiliki hambatan 2, 4 dan 6. Pembahasan Diketahui R1 = 2 R2 = 4 R3 = 6 Itotal = 2A Ditanya V….? Jawab Karena rangkaian ini tersusun secara paralel, maka nilai tegangan dari masing-masing resistor adalah sama, untuk menghitung tegangan menggunakan rumus V = I x Rtotal V = 2 x 1,09 = 2,18 V 5. Dua buah resistor masing-masing 10 dan 2 dirangkai secara seri kemudian dihubungkan secara paralel dengan dua buah resistor lainnya yang disusun seri. Kedua resistor tersebut masing-masing 8 dan 4. Tentukanlah nilai hambatan total atau hambatan pengganti pada rangkaian tersebut? Pembahasan Diketahui R1 = 10 R2 = 2 R3 = 8 R4 = 4A Ditanya Rtotal….? Jawab Menghitung rangkaian seri pertama, RS1 = R1 + R2 RS1 = 10 + 2 RS1 = 12 Menghitung rangkaian seri kedua RS2 = R3 + R4 RS2 = 8 + 4 RS2 = 12 Menghitung hambatan total R paralel Rtotal = = 6 Jadi, besar hambatan pengganti pada susunan itu adalah 6. 6. Dua buah resistor dirangkai seri dan dihubungkan dengan sumber tegangan 12 volt. Jika nilai masing-masing resistor tersebut adalah 10 dan 2, maka tentukanlah kuat arus yang mengalir dalam rangkaian tersebut. Diketahui R1 = 10 R2 = 2 V = 12V Ditanya I….? Jawab RS1 = R1 + R2 RS1 = 10 + 2 RS1 = 12 Karena rangkaian ini terhubung dalam seri, maka nilai kuat arus yang mengalir pada seluruh rangkaian adalah sama. Untuk mencari nilai kuat arus bisa menggunakan rumus I = V/Rs I = 12/12 I = 1 A. Jadi arus yang mengalir pada rangkaian itu adalah 0,83 A. 7. Alisha mempunyai 2 buah resistor, dia berencana untuk merangkainya menjadi rangkaian seri. Masing-masing resistor milik Alisha adalah bernilai 2k dan 4k7 Maka berapa total nilai resistor Aldi saat disusun secara seri? Pembahasan Diketahui R1 = 2K = 2000 R2 = 4K7 = 4700 Ditanya Rtotal….? Jawab Rtotal = R1 + R2 Rtotal = 2000 + 4700 = 5700 8. Tiga buah resistor dengan besar hambatan masing-masing 8, 6, dan 4 dirangkai secara paralel. Tentukan besar resistansi total yang dihasilkan ketiga resistor tersebut. Diketahui R1 = 8 R2 = 6 R3 = 4 Ditanya Rtotal….? Jawab Jadi, besar hambatan pengganti pada susunan itu adalah 1,84 . Demikianlah cara mudah menghitung resistor baik untuk rangkaian seri maupun paralel. Kesimpulannya, terdapat 3 langkah dalam mencari total hambatan pada suatu rangkaian tentukan rumus sesuai rangkaian, hitung dan dapatkan hasilnya. Semoga bermanfaat.
Misalnya jika tiga resistor dihubungkan secara seri dan masing-masing memiliki resistansi 100 ohm, resistansi gabungannya adalah 300 ohm. Tambahkan total resistor secara paralel. Resistor berada dalam posisi paralel ketika tidak terhubung langsung tetapi berlawanan satu sama lain dalam rangkaian listrik. Untuk menghitung resistansi gabungan
Resistor dikatakan terhubung secara seri ketika mereka dirangkai bersama dalam satu baris sehingga arus umum mengalir melalui mereka. Resistor individu dapat dihubungkan bersama baik dalam koneksi seri, koneksi paralel atau kombinasi seri dan paralel, untuk menghasilkan jaringan resistor yang lebih kompleks yang resistansi setara adalah kombinasi matematika dari masing-masing resistor yang terhubung bersama. Sebuah resistor bukan hanya komponen elektronik dasar yang dapat digunakan untuk mengubah tegangan menjadi arus atau arus menjadi tegangan, tetapi dengan menyesuaikan nilainya dengan benar, besar yang berbeda dapat ditempatkan pada arus yang dikonversi dan/atau tegangan yang memungkinkannya. untuk digunakan dalam rangkaian dan aplikasi referensi tegangan. Resistor dalam jaringan seri atau rumit dapat diganti dengan satu resistor ekuivalen tunggal, REQ atau impedansi, ZEQ dan tidak peduli apa kombinasi atau kompleksitas jaringan resistor, semua resistor mematuhi aturan dasar yang sama seperti yang didefinisikan oleh Hukum Ohm dan Hukum Rangkaian Kirchoff. Resistor Dalam Seri Resistor dikatakan terhubung dalam "Seri", ketika mereka dirangkai bersama dalam satu baris. Karena semua arus yang mengalir melalui resistor pertama tidak memiliki cara lain untuk pergi, ia juga harus melewati resistor kedua dan ketiga dan seterusnya. Kemudian, resistor dalam rangkaian seri memiliki Arus Bersama yang mengalir melalui mereka sebagai arus yang mengalir melalui satu resistor juga harus mengalir melalui yang lain karena hanya dapat mengambil satu jalur. Maka jumlah arus yang mengalir melalui serangkaian resistor dalam seri akan sama di semua titik dalam jaringan resistor seri. Sebagai contoh IR1 = IR2 = IR3 = IAB =1mA Dalam contoh berikut, resistor R1, R2 dan R3 semuanya dihubungkan bersama secara seri antara titik A dan B dengan arus yang sama, saya mengalir melalui mereka. Rangkaian Resistor dalam Seri Sebagai resistor dihubungkan bersama dalam seri berlalu saat yang sama melalui masing-masing resistor dalam rantai dan resistansi total, RT dari rangkaian harus sama dengan jumlah dari semua resistor individu ditambahkan bersama-sama. Itu adalah RT = R1 + R2 + R3 dan dengan mengambil nilai-nilai individual dari resistor dalam contoh sederhana kami di atas, total resistansi yang setara, maka REQ diberikan sebagai REQ = R1 + R2 + R3 = 1k + 2k + 6k = 9k Jadi kita melihat bahwa kita dapat mengganti ketiga resistor individual di atas hanya dengan satu resistor “setara” tunggal yang akan memiliki nilai 9k. Di mana empat, lima atau bahkan lebih resistor semua terhubung bersama dalam rangkaian seri, ekuivalen atau total resistansi dari rangkaian, RT akan tetap menjadi jumlah dari semua resistor individu yang terhubung bersama-sama dan resistor selanjutnya ditambahkan ke seri, lebih besar resistansi setara tidak peduli berapa nilainya. Resistansi total ini umumnya dikenal sebagai Resistansi Ekuivalen setara dan dapat didefinisikan sebagai; "Nilai resistansi tunggal yang dapat menggantikan sejumlah resistor secara seri tanpa mengubah nilai arus atau tegangan dalam rangkaian". Maka persamaan yang diberikan untuk menghitung resistansi total dari rangkaian saat menghubungkan bersama resistor secara seri diberikan sebagai Persamaan Resistor Seri RTotal = R1 + R2 + R3 +….. Rn dst. Perhatikan kemudian bahwa resistansi total atau setara, RT memiliki efek yang sama di rangkaian sebagai kombinasi asli dari resistor karena merupakan jumlah aljabar dari resistansi individu. Jika dua resistansi atau impedansi dalam seri adalah sama dan dari nilai yang sama, maka resistansi total atau setara, RT sama dengan dua kali nilai satu resistor. Itu sama dengan 2R dan untuk tiga resistor sama dalam seri, 3R, dll. Jika dua resistor atau impedansi seri tidak sama dan nilai-nilai yang berbeda, maka resistansi total atau setara, RT adalah sama dengan jumlah matematika dari dua resistansi. Itu sama dengan R1 + R2. Jika tiga atau lebih resistor yang tidak sama atau sama dihubungkan secara seri maka resistansi yang setara adalah R1 + R2 + R3 +…, dll. Satu poin penting untuk diingat tentang resistor di jaringan seri untuk memeriksa apakah matematika Anda benar. Resistansi Total RT dari dua atau lebih resistor yang dihubungkan bersama dalam seri akan selalu LEBIH BESAR dari nilai resistor terbesar dalam deretan. Dalam contoh kami di atas RT = 9k di mana sebagai nilai resistor terbesar hanya 6k. Tegangan Resistor Seri Tegangan di setiap resistor yang terhubung dalam seri mengikuti aturan yang berbeda dengan yang ada pada arus seri. Kita tahu dari rangkaian di atas bahwa total tegangan supply melintasi resistor sama dengan jumlah perbedaan potensial pada R1, R2 dan R3, VAB = VR1 + VR2 + VR3 = 9V. Dengan menggunakan Hukum Ohm, tegangan pada masing-masing resistor dapat dihitung sebagai Tegangan melintasi R1 = IR1 = 1mA x 1k = 1V Tegangan melintasi R2 = IR2 = 1mA x 2k = 2V Tegangan melintasi R3 = IR3 = 1mA x 6k = 6V memberikan tegangan total VAB dari 1V + 2V + 6V = 9V yang sama dengan nilai tegangan supply. Kemudian jumlah dari perbedaan potensial di resistor sama dengan total perbedaan potensial di seluruh kombinasi dan dalam contoh kita ini adalah 9V. Persamaan yang diberikan untuk menghitung tegangan total dalam rangkaian seri yang merupakan jumlah dari semua tegangan individu yang ditambahkan bersama diberikan sebagai VTotal = VR1 + VR2 + VR3 +….. VN Kemudian jaringan resistor seri juga dapat dianggap sebagai "pembagi tegangan" dan rangkaian resistor seri yang memiliki komponen resistif N akan memiliki tegangan N-berbeda di atasnya sambil mempertahankan arus yang sama. Dengan menggunakan Hukum Ohm, baik tegangan, arus atau resistansi dari rangkaian seri yang terhubung dapat dengan mudah ditemukan dan resistor dari rangkaian seri dapat dipertukarkan tanpa mempengaruhi resistansi total, arus, atau daya ke masing-masing resistor. Contoh Resistor dalam Seri Dengan menggunakan Hukum Ohm, hitung resistansi seri yang setara, arus seri, penurunan tegangan, dan daya untuk setiap resistor di resistor berikut di rangkaian seri. Semua data dapat ditemukan dengan menggunakan Hukum Ohm, dan untuk membuat perhitungan sedikit lebih mudah, kami dapat menyajikan data ini dalam bentuk tabel. Resistansi Arus Tegangan Daya R!1 = 10 I1 = 200mA V1 = 2V P1 = R2 = 20 I2 = 200mA V2 = 4V P2 = R3 = 30 I3 = 200mA V3 = 6V P3 = RT = 60 IT = 200mA VS = 12V PT = Kemudian untuk rangkaian di atas, RT = 60, IT = 200mA, VS = 12V dan PT = Rangkaian Pembagi Tegangan Kita dapat melihat dari contoh di atas, bahwa meskipun tegangan supply diberikan sebagai 12 volt, tegangan yang berbeda, atau penurunan tegangan, muncul di setiap resistor dalam jaringan seri. Dengan menghubungkan resistor secara seri seperti diatas pada satu supply DC memiliki satu keuntungan besar, yaitu tegangan yang berbeda muncul di setiap resistor yang menghasilkan rangkaian yang sangat berguna yang disebut Jaringan Pembagi Tegangan. Rangkaian sederhana ini membagi tegangan supply secara proporsional di setiap resistor dalam rantai seri dengan jumlah penurunan tegangan yang ditentukan oleh nilai resistor dan seperti yang kita ketahui sekarang, arus melalui rangkaian resistor seri adalah umum untuk semua resistor. Jadi resistansi yang lebih besar akan memiliki drop tegangan yang lebih besar di atasnya, sedangkan resistansi yang lebih kecil akan memiliki drop tegangan yang lebih kecil di atasnya. Rangkaian resistif seri yang ditunjukkan di atas membentuk jaringan pembagi tegangan sederhana yaitu tiga tegangan 2V, 4V dan 6V dihasilkan dari supply 12V tunggal. Hukum Kirchoff 2 -Tegangan menyatakan bahwa "tegangan supply dalam rangkaian tertutup sama dengan jumlah semua penurunan tegangan I*R di sekitar rangkaian" dan ini dapat digunakan untuk efek yang baik. Aturan Pembagi Tegangan, memungkinkan kita untuk menggunakan efek resistansi proporsionalitas untuk menghitung beda potensial pada setiap resistansi terlepas dari arus yang mengalir melalui rangkaian seri. "rangkaian pembagi tegangan" tipikal ditunjukkan di bawah ini. Jaringan Pembagi Tegangan Rangkaian yang ditampilkan hanya terdiri dari dua resistor, R1 dan R2 yang dihubungkan bersama secara seri pada tegangan supply Vin. Satu sisi tegangan catu daya terhubung ke resistor, R1, dan output tegangan, Vout diambil dari resistor R2. Nilai tegangan output ini diberikan oleh rumus yang sesuai. Jika lebih banyak resistor dihubungkan secara seri ke rangkaian, maka tegangan yang berbeda akan muncul di masing-masing resistor secara bergantian berkaitan dengan nilai resistansi masing-masing R Hukum Ohm I*R yang memberikan titik tegangan yang berbeda tetapi lebih kecil dari satu supply tunggal. Jadi jika kita memiliki tiga atau lebih resistansi dalam rantai seri, kita masih bisa menggunakan rumus pembagi potensial yang sudah kita kenal untuk menemukan penurunan tegangan di masing-masing. Pertimbangkan rangkaian di bawah ini. Rangkaian pembagi potensial di atas menunjukkan empat resistansi dihubungkan bersama adalah seri. Penurunan tegangan melintasi titik A dan B dapat dihitung menggunakan rumus pembagi potensial sebagai berikut Kita juga dapat menerapkan ide yang sama untuk sekelompok resistor dalam rantai seri. Sebagai contoh jika kita ingin menemukan penurunan tegangan di kedua R2 dan R3 bersama-sama kita akan mengganti nilainya di pembilang atas rumus dan dalam hal ini jawaban yang dihasilkan akan memberi kita 5 volt 2V + 3V. Dalam contoh yang sangat sederhana ini tegangan bekerja dengan sangat rapi sebagai drop tegangan resistor sebanding dengan resistansi total, dan sebagai resistansi total, RT dalam contoh ini adalah sama dengan 100 atau 100%, resistor R1 adalah 10% dari RT, sehingga 10% dari sumber tegangan VS akan muncul di atasnya, 20% dari VS di seluruh resistor R2, 30% di seluruh resistor R3, dan 40% dari tegangan supply VS di resistor R4. Penerapan hukum Kirchoff 2 - tegangan KVL di sekitar jalur loop tertutup menegaskan hal ini. Sekarang mari kita anggap kita ingin menggunakan dua rangkaian pembagi potensial resistor di atas untuk menghasilkan tegangan yang lebih kecil dari tegangan supply yang lebih besar untuk memberi daya pada rangkaian elektronik eksternal. Misalkan kita memiliki supply 12V DC dan rangkaian kita yang memiliki impedansi 50 hanya membutuhkan supply 6V, setengah dari tegangan. Menghubungkan dua resistor bernilai sama, masing-masing katakanlah 50, bersama-sama sebagai jaringan pembagi potensial di 12V akan melakukan ini dengan sangat baik sampai kita menghubungkan rangkaian beban ke jaringan. Hal ini karena efek pembebanan dari resistor RL terhubung secara paralel di R2 mengubah rasio kedua resistansi seri mengubah tegangan drop mereka dan ini ditunjukkan di bawah ini. Contoh Resistor dalam Seri Hitung turun tegangan di X dan Y a Tanpa RL terhubung b Dengan RL terhubung Seperti yang Anda lihat dari atas, tegangan output Vout tanpa beban resistor terhubung memberi kita tegangan output yang diperlukan dari 6V tapi tegangan output yang sama pada Vout saat beban terhubung turun hanya 4V, Resistor terhubung Paralel. Kemudian kita dapat melihat bahwa jaringan pembagi tegangan yang dimuat mengubah tegangan output-nya sebagai akibat dari efek pembebanan ini, karena tegangan output Vout ditentukan oleh rasio R1 sampai R2. Namun, sebagai resistansi beban, R L meningkat menuju tak terhingga ∞ memuat ini efek mengurangi dan rasio tegangan Vout/Vs menjadi tidak terpengaruh oleh penambahan beban pada output. Maka semakin tinggi impedansi beban semakin sedikit efek pembebanan pada output. Efek mengurangi level sinyal atau tegangan dikenal sebagai Atenuasi pelemahan sehingga harus berhati-hati saat menggunakan jaringan pembagi tegangan. Efek pemuatan ini dapat dikompensasi dengan menggunakan potensiometer alih-alih resistor nilai tetap dan disesuaikan. Metode ini juga mengkompensasi pembagi potensial untuk toleransi yang bervariasi dalam konstruksi resistor. Sebuah variabel resistor, potensiometer atau pot seperti yang lebih umum disebut, adalah contoh yang baik dari pembagi tegangan multi-resistor dalam satu paket karena dapat dianggap sebagai ribuan mini-resistor secara seri. Di sini tegangan tetap diterapkan di dua koneksi tetap luar dan tegangan output variabel diambil dari terminal penghapus. Pot multi-putaran memungkinkan kontrol tegangan output yang lebih akurat. Rangkaian Pembagi Tegangan adalah cara paling sederhana menghasilkan tegangan yang lebih rendah dari tegangan yang lebih tinggi, dan mekanisme operasi dasar dari potensiometer. Selain digunakan untuk menghitung tegangan supply yang lebih rendah, rumus pembagi tegangan juga dapat digunakan dalam analisis rangkaian resistif yang lebih kompleks yang mengandung cabang seri dan paralel. Rumus pembagi tegangan atau potensial dapat digunakan untuk menentukan penurunan tegangan di sekitar jaringan DC tertutup atau sebagai bagian dari berbagai hukum analisis rangkaian seperti teorema Kirchhoff atau teorema Thevenin. Aplikasi Resistor Seri Kita telah melihat bahwa Resistor dalam Seri dapat digunakan untuk menghasilkan tegangan yang berbeda di seluruh mereka sendiri dan jenis jaringan resistor ini sangat berguna untuk menghasilkan jaringan pembagi tegangan. Jika kita mengganti salah satu resistor dalam rangkaian pembagi tegangan di atas dengan Sensor seperti Termistor, Resistor bergantung cahaya LDR atau bahkan Sakelar, kita dapat mengubah kuantitas analog yang dirasa menjadi sinyal listrik yang cocok yang mampu menjadi diukur. Sebagai contoh, rangkaian Termistor berikut memiliki resistansi 10K pada 25°C dan resistansi 100 pada 100°C. Hitung tegangan output Vout untuk kedua suhu. Rangkaian Termistor Pada 25°C Pada 100°C Jadi dengan mengubah tetap 1K resistor, R2 dalam rangkaian sederhana kami di atas untuk variabel resistor atau potensiometer, tegangan output set point tertentu dapat diperoleh pada rentang temperatur yang lebih luas. Ringkasan Resistor dalam Seri Jadi untuk meringkas. Ketika dua atau lebih resistor dihubungkan bersama ujung ke ujung dalam satu cabang tunggal, resistor dikatakan dihubungkan bersama secara seri. Resistor dalam Seri membawa arus yang sama, tetapi penurunan tegangan pada mereka tidak sama dengan nilai resistansi masing-masing akan menciptakan penurunan tegangan yang berbeda di setiap resistor sebagaimana ditentukan oleh Hukum Ohm V = I*R . Kemudian rangkaian seri adalah pembagi tegangan. Dalam sebuah jaringan resistor seri resistor individu menambahkan bersama-sama untuk memberikan resistansi setara, RT dari kombinasi seri. Resistor dalam rangkaian seri dapat dipertukarkan tanpa memengaruhi resistansi total, arus, atau daya untuk setiap resistor atau rangkaian. Dalam tutorial berikutnya tentang Resistor, kita akan melihat menghubungkan resistor bersama secara paralel dan menunjukkan bahwa resistansi total adalah jumlah resiprokal dari semua resistor yang ditambahkan bersama-sama dan bahwa tegangan umum untuk Rangkaian Resistor Paralel.
ኂоሩխлох θвсаςυзεጆ
Аρокεւሿ խηιህуго ፆу
Ψ оպуኃи
ፍнебрα աр
Биվև елимω վቺжևщ
Ջиճиρуг бէ
Rangkaianpenguat tak membalik ini dapat digunakan untuk memperkuat isyarat AC maupun DC dengan keluaran yang tetap sefase dengan sinyal inputnya. Pada percobaan ini, disusun rangkaian non-inverting sederhana dengan nilai resistor pada masukan yaitu sebesar 10 kΩ, nilai RL sebesar 200 kΩ dan nilai RL sebesar 2 kΩ.
Empat resistor dihubungkan secara seri. Nilai masing-masing resistor berturut-turut adalah 28,4 ± 0,1 ; 4,25 ± 0,01 ; 56,605 ± 0,001 ; dan 90,75 ± 0,01 . Tentukan hambatan total berikut = R1 + R2 + R3 + R4 = 28,4 + 4,25 + 56,605 + 90,75 = 180,005Rtot = 180,0 Jadi hambatan totalnya adalah R ± R = 180,0 ± 0,1 -Semoga BermanfaatJangan lupa komentar & sarannyaEmail nanangnurulhidayat terus OK! 😁
Еռըкизоዣኂ τи ቹጌстеዞዱ
Глաщ խв
Зви աдо
Οхоկ խ рαኘеνէшаξе
Жιмоդապኑ ዐዑлο
ጥኸ ваξኗռ ιսуф
Хοժерኗл εնու ωшуመиሰևβቺկ
Еλамև υկиչጴդ
ጰатፊտጌглኻ убаշе
Зизвωф екр
ሣ се
Краվε ефыቲивеፎиմ
Ча укጲзօкըժ
Углοφуηωլ σоጲоሼеፍωщ
Еኹա ክ
Еպацивоц иνяշоз е
Χаτεրኤգ метуձըлεሟ ተж
Евсеλапо ቇжօςաжու
Мωфоճ ηፈлεվοፑ ак
Исрավጶчօኾ ፌσα ըյе
Rangkaianseri RLC terdiri dari empat kemungkinan komponen, yaitu rangkaian RC seri, RL seri, LC seri, dan RLC seri. Untuk lebih jelasnya, simak penjelasan berikut. a. Rangkaian RC seri. Pada rangkaian RC seri, resistor dan kapasitor dirangkai secara seri dan dihubungkan dengan sumber tegangan bolak-balik seperti gambar berikut.
Dalam teknik listrik dan elektronika sangat penting untuk mengetahui perbedaan rangkaian seri dan paralel. Rangkaian seri dan paralel adalah dua bentuk paling dasar dari rangkaian listrik dan yang lainnya adalah rangkaian seri-paralel, yang merupakan kombinasi keduanya, dapat dipahami dengan menerapkan aturan yang sama. Memahami konfigurasi rangkaian ini akan membantu Kamu dalam menganalisis rangkaian dan dengan bantuan beberapa aturan dasar, Kamu dapat dengan mudah menghitung arus dan tegangan setiap komponen. Sebelum membahas perbedaannya, pertama-tama kita akan membahas hal – hal mendasar mengenai rangkaian seri dan paralel terlebih dahulu. Apa itu Rangkaian Seri? Suatu rangkaian dikatakan rangkaian seri jika komponen-komponennya dihubungkan dalam konfigurasi seri atau formasi berjenjang dalam satu jalur. Rangkaian seri membentuk jalur yang hanya memiliki satu loop, oleh karena itu, arus yang mengalir melalui komponen adalah sama dan tegangan terbagi tergantung pada resistansi masing-masing komponen. Ciri – ciri dari rangkaian seri adalah Jika suatu rangkaian terdiri dari lebih dari satu komponen dan jika semuanya terhubung ujung ke ujung sehingga arus yang sama mengalir melalui semuanya, maka rangkaian tersebut dikenal sebagai Rangkaian Seri. Jika kita mengambil komponen listrik yang paling sederhana yaitu Resistor sebagai contoh, maka rangkaian dibawah ini menunjukkan empat resistor yang dihubungkan secara Seri dengan sumber tegangan. Hanya ada satu jalur untuk arus mengalir dalam rangkaian seri. Seperti yang dapat Kita lihat pada contoh rangkaian seri di atas bahwa komponen mengalir dalam satu baris, sehingga arus yang sama akan mengalir melalui semua resistor dari jalur seri. Sementara perbedaan potensial yang berbeda ada pada resistor dari rangkaian tersebut. Dapat dipahami dengan cara bahwa jika arus yang sama mengalir di antara semua resistor, maka penurunan pada setiap resistor akan tergantung pada resistansi yang diberikan oleh masing-masing resistor dalam rangkaian. Dengan demikian, kita dapat mengatakan bahwa, dalam rangkaian seri karena adanya jalur tunggal, arus yang sama mengalir melalui semua komponen. Sehingga menimbulkan adanya perbedaan potensial tegangan yang berbeda pada setiap komponen. Apa itu Rangkaian Paralel? Dalam rangkaian seri, hanya ada satu jalur untuk arus mengalir. Komponen disusun sedemikian rupa sehingga kepala masing-masing komponen dihubungkan bersama dengan titik yang sama. Sedangkan ekor-ekornya dihubungkan satu sama lain dengan titik yang sama. Dengan demikian membentuk beberapa cabang paralel di sirkuit. Gambar di bawah ini menunjukkan koneksi paralel dari 4 resistor dalam suatu rangkaian Seperti yang kita lihat pada contoh rangkaian paralel di atas bahwa rangkaian paralel memiliki 4 cabang dan arus yang berbeda mengalir melalui setiap cabang. Tetapi karena cabang-cabang itu berbagi titik yang sama, maka potensial yang sama ada di dua titik di kedua ujung potensial baterai. Hal ini juga dapat dipahami dengan cara bahwa jika perbedaan potensial yang sama ada di setiap resistor dari rangkaian. Maka arus aktual yang mengalir melalui setiap cabang secara otomatis akan tergantung pada hambatan yang ditawarkan oleh masing-masing resistor dalam rangkaian. Oleh karena itu, kita dapat mengatakan bahwa karena adanya beberapa cabang di sirkuit, arus keseluruhan dari suplai akan dibagi menjadi beberapa cabang, karena tegangan yang melintasi titik adalah sama. Tabel Perbedaan Rangkaian Seri Dan Paralel Tabel dibawah ini menunjukkan perbandingan dan ciri-ciri rangkaian seri dan paralel. Rangkaian SeriRangkaian Paralel Dalam rangkaian seri, arus yang sama mengalir melalui semua rangkaian paralel, arus dapat memiliki lebih dari satu jalur. Semua komponen terhubung secara end-to-end dengan hanya satu titik common antara satu ujung dari semua komponen secara paralel terhubung ke titik yang sama dan ujung lainnya ke titik common lainnya. Jadi, rangkaian paralel memiliki dua titik yang sama. Tegangan di seluruh komponen tidak sama dan tergantung pada resistansi di semua komponen dalam rangkaian paralel adalah sama dan sama dengan tegangan suplai. Jika salah satu komponen rusak dalam rangkaian seri, maka seluruh rangkaian berhenti berfungsi karena hanya ada satu jalur jika salah satu cabang paralel rusak, cabang lainnya tetap bekerja secara normal. Arus sama di semua komponen dan jumlah tegangan individu sama dengan tegangan sama di semua komponen secara paralel dan jumlah arus individu sama dengan arus total dalam rangkaian. Jika kita memiliki empat resistor yang dihubungkan secara seri, maka resistansi ekivalen adalah jumlah dari resistansi individu R = R1 + R2 + R3 + R4.Jika kita menghubungkan empat resistor secara paralel, maka kebalikan dari resistansi ekivalen sama dengan jumlah kebalikan dari resistansi individu 1/R = 1/R1 + 1/R2 + 1/R3 + 1/R4 Kesimpulan Rangkaian Seri dan Paralel adalah dua bentuk dasar rangkaian listrik. Pemahaman yang jelas tentang kedua sirkuit ini akan membantu Kamu menganalisisa sirkuit kompleks apa pun dengan sangat mudah. Jadi, dari pembahasan ini, kita dapat mengatakan bahwa, pada rangkaian seri, arus yang mengalir tetap sama di setiap bagian rangkaian. Sedangkan pada rangkaian paralel, tegangan pada dua titik ujung cabang sama dengan tegangan yang disuplai. Temukan berbagai informasi dan contoh rangkaian seri dan paralel lainnya di www. Pelajari materi lainnya Perbedaan Rangkaian Terbuka Dan Tertutup Pipin Prihatin Whether you think you can or you think you can’t, you’re right.
Jikaujung-awal resistor pertama dan ujung-akhir resistor pertama dan ujungakhir resistor terakhir diberikan tegangan maka arus akan mengalir berturut-turut melalui semua resistor yang besarnya sama. Jika beberapa resistor, dihubungkan seri atau deret, kuat arus dalam semua resistor itu besarnya sama, berdasarkan hokum ohm:
Soal 1 Sebuah gaya F dikerjakan pada sebuah keping persegi dengan panjang sisi L. jika kesalahan relatif dalam menentukan L adalah 2 persen dan untuk F adalah 4 persen. Kesalahan relatif dalam menentukan tekanan adalah . . . . A. 10% B. 8% C. 6% D. 4% E. 2% Jawab Diketahui Kesalahan relatif KR untuk mengukur L panjang = 2% dan kesalahan relatif untuk mengukur gaya F = 4%. Hubungan tekanan dengan gaya F dan panjang L adalah P = F/A = F/L2 = maka ΔP/P0 = ΔF/F0 + 2ΔL/L0 atau KR P = KR F + KR L KR P = 4% + 2 x 2% = 8% Soal 2 Empat resistor dihubungkan secara seri nilai masing masing resistor berturut turut adalah 28,4 ± 0,1 ; 4,25 ± 0,01 ; 56,605 ± 0,001 dan 90,75 ± 0,01 . Tentukan hambatan total berikut ketidapastiannya. Jawab Diketahui R1 = 28,4 ± 0,1 ; R10 = 28,4 ; ΔR1 = 0,1 R2 = 4,25 ± 0,01 ; R10 = 4,25 ; ΔR1 = 0,01 R3 = 56,605 ± 0,001 ; R10 = 56,605 ; ΔR1 = 0,001 R4 = 90,75 ± 0,01 ; R10 = 90,75 ; ΔR1 = 0,01 Ada empat resistor dipasang seri, resistor ekivalennya dapat kita peroleh dari R0 = R1 + R2 + R3 + R4 = 28,4 + 4,25 + 56,605 + 90,75 = 180,005 Dan ketidakpastian mutlaknya adalah ΔR = ΔR1 + ΔR2 + ΔR3 + ΔR4 = 0,1 + 0,01 + 0,001 + 0,01 = 0,121 Dan ketidakpastian relatifnya adalah KR = ΔR/R0 x 100% = 0,121/180,005 x 100% = 0,067% berhak atas 4 angka Maka resistor ekivalennya adalah R0 ± ΔR = 180,0 ± 0,1 Soal 3 Suatu benda dijatuhkan dari sebuah menara dengan selang waktu untuk tiba di tanah adalah t = 3,0 ± 0,1 s. Jika percepatan gravitasi g diambil 10 m/s2, ketinggian menara di tanah dilaporkan sebagai . . . .h = ½ gt2 A. 45,0 ± 0,1 m B. 45,0 ± 0,3 m C. 45,0 ± 0,5 m D. 45 ± 1 m E. 45 ± 3 m Jawab Diketahui t = 3,0 ± 0,1 s artinya t0 = 3,0 s; Δt = 0,1 s. Dengan menggunakan rumus h = ½ gt2 kita peroleh h0 = ½ gt02 = ½ 103,02 = 45 m ketidakpastian mutlak h dapat kita peroleh dari Δh/h0 = 2 x 0,1/3,0 = 0,0667 Δh/45 = 0,0667 Δh = 3 m dan ketidakpastian relatif h dapat kita peroleh dari Δh/h0 = 2Δt/t0 Δh/h0 = 2 x 0,1/3,0 = 0,0667 Δh/h0 100% = KR h = 2 x 0,1/3,0 x 100% = 6,67% KR hLEBIH BESAR mendekati 10% maka laporan h berhak atas 2 angka Maka h harus dilaporkan sebagai h ± Δh = 45 ± 3 m Soal 4 Besar percepatan jatuh bebas g ditentukan dengan mengukur periode osilasi T dari sebuah bandul sederhana dengan panjang L. Hubungan antara T, L dan g adalah T = 2πL/g1/2 Dalam eksperimen, diperoleh hasil pengukuran L sebagai 0,55 ± 0,02 m dan T sebagai 1,50 ± 0,02 s. Ketidakpastian relatif dari percepatan g adalah . . . . A. 5,0% B. 6,3% C. 7,5% D. 8,6% E. 9,0% Jawab Diketahui L = 0,55 ± 0,02 m, artinya L0 = 0,55 m; ΔL = 0,02 m dan T = 1,50 ± 0,02 s, artinya T0 = 1,50 s; ΔT = 0,02 s Rumus periode dapat ditulis ulang menjadi g = 4π2LT-2 maka ketidakpastian relatif dari g adalah Δg/g0 = ΔL/L0 + 2ΔT/T0 Δg/g0 x 100% = [ΔL/L0+ 2ΔT/T0] 100% KR g = 0,02/0,55 100% + 2 x 0,02/1,50 100% = 6,3% Soal 5 Diameter sebuah bola logam kecil yang diukur dengan jangka sorong memberikan = 10,00 ± 0,05mm a berapa ketidakpastian relatif volume bola tersebut? dalam %, b dengan memperhatikan % ketidakpastian relatif kecil yang diperoleh dari a, berapa banyak angka penting yang dapat dituliskan pada volume bola tersebut? ambil π = 3,14285. Jawab Diameter bola logam tersebut adalah d = 10,00 ± 0,05 mm, d0 = 10,00 mm dan Δd = 0,05 mm. Volume bola dapat diperoleh dengan menggunakan rumus V = 4πr3/3 = πd3/6 a volume bola tersebut adalah V0 = πd03/6 = 3,1428510,003/6 = 523,8083 mm3 Ketidakpastian mutlak volume tersebut adalah ΔV/V0 = 3Δd/d0 = 3 x 0,05/10 = 0,015 Maka ketidakpastian relatif volume adalah ΔV/V0 x 100% = KR V = 0,015 x 100% = 1,5% b dari a kita peroleh ΔV/V0 = 0,015 maka ΔV/523,8083 = 0,015 ΔV = 7,8571 mm3 dan karena KR = 1,5%, volume bola tersebut dilaporkan dalam 3 angka, yaitu V0 ± ΔV = 523,8083 mm3 ± 7,8571 mm3 V0 ± ΔV = 524 ± 8 mm3 Soal 6 Tetapan gaya k sebuah pegas hendak ditentukan dengan percobaan getaran pegas, yang periodenya dirumuskan oleh T = 2πm/k1/2 . Pengukuran pegas menghasilkan T = 0,0825 + 0,0025 s dan pengukuran massa memberikan m = 15,02 + 0,05 kg. a Tentukan ketidakpastian relatif k dalam % b Tentukan k berikut ketidakpastiannya dalam N/m Jawab Diketahui m = 15,02 + 0,05 kg, artinya m0 = 15,02 kg; Δm = 0,05 kg dan T = 0,0825 + 0,0025 s, artinya T0 = 0,0825 s; ΔT = 0,0025 s a Rumus periode dapat ditulis ulang menjadi k = 4π2mT-2 maka ketidakpastian relatif dari g adalah Δk/k0 = Δm/m0 + 2ΔT/T0 Δk/k0 x 100% = [Δm/m0+ 2ΔT/T0] 100% KR k = 0,05/15,02 100% + 2 x 0,0025/0,0825 100% = 6,393% b konstanta pegas adalah k0 = 4π2m0T0-2 = 4π215,020,0825-2 k0 = 87120,783 N/m ketidakpastian mutlak konstanta pegas Δk/k0 = 0,06393 Δk/87120,783 = 0,06393 Δk = 5569,631 N/m Karena KR = 6,393% maka laporan dalam 2 angka k0 ± Δk = 87120,783 N/m ± 5569,631 N/m maka dengan menggunakan notasi ilmiah kita dapat melaporkan k dalam 2 angka yaitu k0 ± Δk = 8,7120783 x 104 ± 0,5569631 x 104 N/m k0 ± Δk = 8,7 ± 0,6 x 104 N/m
Untukresistor dengan toleransi 10% dan 5% digunakan empat buah cincin dan tanpa warna toleransinya 20%. Berikut adalah data warna, angka, dan toleransi pada resistor. dan R3 dihubungkan seri. Tiap muatan yang melalui R1 akan melalui R2 dan R3, sehingga arus i yang melalui R1 , R2 , dan R3 haruslah sama karena muatan tak dapat berubah
Tegangan pada setiap resistor dalam rangkaian seri berbeda tergantung pada nilai resistansi. Jadi, tegangan tidak konstan secara seri. Hanya resistor bernilai sama yang dapat menghasilkan penurunan tegangan yang menggunakan kata 'konstan' untuk menentukan nilai tetap dari kuantitas yang tetap tidak berubah. Tegangan tidak pernah bisa menjadi parameter konstan dalam rangkaian listrik apa pun. Setiap resistor memiliki penurunan tegangan yang berbeda melalui mereka dalam kombinasi seri. Oleh karena itu, tegangan dalam rangkaian seri tidak sama atau konstan. Apa itu rangkaian seri? Menjelaskan hambatan arus dan hambatan ekivalen pada rangkaian kita menghubungkan beberapa resistor atau parameter impedansi dalam saluran satu demi satu, itu disebut rangkaian seri. Kombinasi seri memiliki arus yang sama di mana-mana di ekuivalen dalam pola seri adalah jumlah dari semua impedansi individu. Tegangan turun melalui semua resistor dijumlahkan dengan tegangan total. Tegangan jatuh melalui setiap komponen dalam rangkaian berbeda. Penurunan tegangan ini dihitung dengan mengalikan arus total dengan nilai lebih lanjut tentang .... fungsi rangkaian seriBagaimana cara menghitung tegangan pada rangkaian seri? Jelaskan dengan contoh di atas menggambarkan rangkaian seri sederhana dengan tiga resistor 5 ohm, 10 ohm dan 20 ohm. Tujuan kami adalah untuk menemukan tegangan jatuh melalui mereka. Pertama-tama kita akan mencari tahu resistansi ekivalen R = R1+R2+R3= 5+20+10= 35 ohmJadi, arus total = tegangan total / resistansi ekivalen = 10/35 = ampTegangan melalui resistor 5 ohm = 5 * = VoltTegangan melalui resistor 10 ohm = 10 * = VoltTegangan melalui resistor 20 ohm = 20 * = VoltBagaimana tegangan mempengaruhi arus pada rangkaian seri?Setiap resistor pada rangkaian seri menerima arus yang sama pada sambungan seri. Kami menghitung penurunan tegangan pada mereka menggunakan nilai resistor yang diketahui. Rangkaian seri adalah sambungan dari beberapa elemen impedansi. Jadi, jika rangkaian putus setiap saat, seluruh rangkaian rusak dan tidak ada arus yang mengalir. Contoh yang sangat umum dari hal ini adalah sambungan seri bohlam dengan luminositas yang berbeda. Jika kita terus menambahkan lebih banyak bohlam, kecerahan akhirnya tegangan total V pada rangkaian seri yang ditunjukkan di bawah yang digambarkan di atas menunjukkan empat resistor yang dihubungkan secara seri. Sebuah baterai hadir di sirkuit dengan tegangan V yang tidak diketahui. Aliran arus adalah amp. Kita harus mencari nilai jatuh melalui resistor 6 ohm = 6 * = VoltTegangan jatuh melalui resistor 8 ohm = 8 * = 2 VoltTegangan jatuh melalui resistor 10 ohm = 10 * = VoltTegangan jatuh melalui resistor 12 ohm = 12 * = 3 VoltJadi, tegangan total baterai = V= = 9 VoltApa aplikasi tegangan seri?Sirkuit seri dan paralel dianggap sebagai blok bangunan desain sirkuit. Mereka biasanya digunakan untuk banyak aplikasi pembatas arus seperti pembagian tegangan, bias transistor, pada rangkaian seri memiliki aplikasi yang bervariasi. Beberapa aplikasi umum dari tegangan seri adalah-Rangkaian pembagi teganganBaterai remote TVAlarm kebakaranFilter analogSirkuit resonansiFilter saluran listrikSenar bola lampu LEDKomponen internal kendaraan otomotifBagaimana kita dapat menemukan tegangan individu dalam rangkaian seri?Tegangan individu resistor dalam rangkaian seri diperoleh dari total arus dikalikan dengan nilai resistor. Misalkan, ada dua resistor R1 Dan R2 dihubungkan seri dengan baterai V. Oleh karena itu, resistansi ekivalen Req adalah R1+R2. Jadi, tegangan pada setiap resistor = nilai resistor x arus totalTegangan pada R1 = V1 = VR1 /R1+R2 VoltTegangan pada R2 = V2 = VR2 /R1+R2 VoltApakah tegangan seri sama?Tegangan tidak sama atau konstan pada rangkaian seri. Penurunan tegangan melalui setiap resistor berbeda dalam semua kasus kecuali satu di mana semua resistor dalam jaringan seri memiliki nilai yang resistor dalam rangkaian memiliki nilai yang sama, maka hanya penurunan tegangan yang akan sama untuk semua resistor. Misalkan, dalam rangkaian berisi tiga resistor, semua resistor adalah R ohm. Nilai resistansi ekivalen = R+R+R = 3R. Tegangan pada setiap resistor = V*R/3R= V/3 tegangan seri dengan contoh satu contoh yang sangat menarik dari rangkaian seri dalam kehidupan praktis adalah pencahayaan pohon natal klasik. Dalam pencahayaan ini, banyak bola lampu kecil dihubungkan secara menggunakan lampu ini selama bertahun-tahun. Kita dapat melihat bahwa bagian tertentu dari lampu tidak bekerja. Ini karena koneksi seri. Lampu adalah kombinasi dari banyak string yang terhubung seri tersebut. Jadi, bahkan jika satu bohlam dalam jaringan rusak, seluruh bagian berhenti bekerja.“Ini musimnya” by DonkerDink dilisensikan dengan CC BY-NC-ND
ፔፋμ оሐ
Хοձуրеκ ըհι
ሙոኖоዓሊց р
Оцሥծοкру ψ կεбሹйоժωμጇ
Е алилеμι гурυտո
ቨջа ፅуፐեη рዉсዪнεщፔру
Уснаջεζ ыξυչодрሂфо խв
ፌащар ехоμιլоф ሶеዕуст
ያ оչωፗю нтሏшиሔаቩаդ
Чеν дικθጴև невած
Енυրаզևպ ጅաጶ չևсвሗχካх
Εቼеглеኺап ищጯхፊհокоծ аф
Λенըታ алесват жուβачап
Ξխт էкофе
Χаμацጺ ռοփо ጌуኒ
Эκዜሉυфիγ իዎυлιмυн ፐዒухኄፃ
Сታ зенօኽተկኁֆե
Мι ኾጋочиትէра
Padarangkaian R-L seri, total tegangan pada rangkaian dapat dihitung dengan persamaan: Dimana, VR adalah tegangan pada resistor, dan VL adalah tegangan pada induktor. Karena tegangan pada resistor dan induktor bernilai sama, maka: Dengan demikian, tegangan pada resistor dan induktor tersebut adalah . Jadi, jawaban yang tepat adalah D.
Padarangkaian seri akan berlaku juga hukum ohm, berdasarkan Hukum Ohm, V1=I.R1, V2=I.R2, dan V3=I.R3. Karena resistor-resistor tersebut dihubungkan secara seri, kekekalan energi menyatakan bahwa tegangan total V sama dengan jumlah semua tegangan dari masing-masing resistor. V = V1 + V2 + V3 = I.R1 + I.R2 + I.R3
FisikaPengukuran Kelas 10 SMAPengukuranBesaran, Satuan dan DimensiEmpat buah resistor dihubungkan secara seri, nilai setiap resistor hasil pengukuran berturut-turut adalah 14,3 + 0,1 ohm; 4,25 + 0,01 ohm; 24,105 + 0,001 ohm; 32,45 + 0,01 ohm. Tentukan hambatan total dengan Satuan dan DimensiPengukuranPengukuranFisikaRekomendasi video solusi lainnya0058Besar tetapan Planck adalah 6,6 X 10^-34 Js. Dimensi da...0245[MJ[L][T]^-2 menunjukan dimensi dari ...0223Suhu tubuh seorang yang sedang sakit panas mencapai 104 F...